Curvature of Vector Bundles Associated to Holomorphic Fibrations

نویسندگان

  • BO BERNDTSSON
  • Bo Berndtsson
چکیده

Let L be a (semi)-positive line bundle over a Kähler manifold, X , fibered over a complex manifold Y . Assuming the fibers are compact and non-singular we prove that the hermitian vector bundle E whose fibers are the space of global sections to L⊗KX/Y endowed with the L-metric is (semi)-positive in the sense of Nakano. As an application we prove a partial result on a conjecture of Griffiths on the positivity of ample bundles. This is a revised and much expanded version of a previous preprint with the title “ Bergman kernels and the curvature of vector bundles”.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

Resolutions of non-regular Ricci-flat Kähler cones

We present explicit constructions of complete Ricci-flat Kähler metrics that are asymptotic to cones over non-regular Sasaki-Einstein manifolds. The metrics are constructed from a complete Kähler-Einstein manifold (V, gV ) of positive Ricci curvature and admit a Hamiltonian two-form of order two. We obtain Ricci-flat Kähler metrics on the total spaces of (i) holomorphic C/Zp orbifold fibrations...

متن کامل

Curvature of Vector Bundles and Subharmonicity of Bergman Kernels

In a previous paper, [1], we have studied a property of subharmonic dependence on a parameter of Bergman kernels for a family of weighted L-spaces of holomorphic functions. Here we prove a result on the curvature of a vector bundle defined by this family of L-spaces itself, which has the earlier results on Bergman kernels as a corollary. Applying the same arguments to spaces of holomorphic sect...

متن کامل

Stable Rank-2 Bundles on Calabi-yau Manifolds

Recently there is a surge of research interest in the construction of stable vector bundles on Calabi-Yau manifolds motivated by questions from string theory. An interesting aspect of the moduli spaces of stable sheaves on Calabi-Yau manifolds is their relation to the higher dimensional gauge theory studied by Donaldson, R. Thomas and Tian et al. [D-T, Tho, Tia]. A holomorphic Casson invariant ...

متن کامل

Stable bundles on positive principal elliptic fibrations

Abstract Let π −→ X be a principal elliptic fibration over a Kähler base X . We assume that the Kähler form on X is lifted to an exact form on M (such fibrations are called positive). Examples of these are regular Vaisman manifolds (in particular, the regular Hopf manifolds) and Calabi-Eckmann manifolds. Assume that dimM > 2. Using the KobayashiHitchin correspondence, we prove that all stable b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005